The Effect of an Ambulance Diversion Ban on Emergency Department Length of Stay and Ambulance Turnaround Time

Laura G. Burke, MD, MPH; Nina Joyce, MPH; William E. Baker, MD; Paul D. Biddinger, MD; K. Sophia Dyer, MD; Franklin D. Friedman, MD, MS; Jason Imperato, MD, MBA; Alice King, MS, RN; Thomas M. Maciejko, EMT-P; Mark D. Pearlmutter, MD; Assaad Sayah, MD; Richard D. Zane, MD; Stephen K. Epstein, MD, MPP

Study objective: Massachusetts became the first state in the nation to ban ambulance diversion in 2009. It was feared that the diversion ban would lead to increased emergency department (ED) crowding and ambulance turnaround time. We seek to characterize the effect of a statewide ambulance diversion ban on ED length of stay and ambulance turnaround time at Boston-area EDs.

Methods: We conducted a retrospective, pre-post observational analysis of 9 Boston-area hospital EDs before and after the ban. We used ED length of stay as a proxy for ED crowding. We compared hospitals individually and in aggregate to determine any changes in ED length of stay for admitted and discharged patients, ED volume, and turnaround time.

Results: No ED experienced an increase in ED length of stay for admitted or discharged patients or ambulance turnaround time despite an increase in volume for several EDs. There was an overall 3.6% increase in ED volume in our sample, a 10.4-minute decrease in length of stay for admitted patients, and a 2.2-minute decrease in turnaround time. When we compared high- and low-diverting EDs separately, neither saw an increase in length of stay, and both saw a decrease in turnaround time.

Conclusion: After the first statewide ambulance diversion ban, there was no increase in ED length of stay or ambulance turnaround time at 9 Boston-area EDs. Several hospitals actually experienced improvements in these outcome measures. Our results suggest that the ban did not worsen ED crowding or ambulance availability at Boston-area hospitals. [Ann Emerg Med. 2013;61:303-311.]

Please see page 304 for the Editor’s Capsule Summary of this article.
and local examples of the negative consequences of diversion, as well as the success of regional no-diversion trials, the Massachusetts Department of Public Health’s Boarding and Diversion Task Force voted to end ambulance diversion in Massachusetts. On July 3, 2008, the department released a policy directive ending the practice of ambulance diversion in the state, except in cases of internal hospital disaster. The policy took effect on January 1, 2009, allowing hospitals 6 months to prepare for the changes necessary for its implementation. This policy represented the first statewide ambulance diversion ban in the United States.

Importance
Restricting ambulance diversion has the potential to produce adverse consequences. One feared consequence of prohibiting diversion was further crowding of already overwhelmed EDs that would now be forced to continually accept new patients. In addition, there had been significant variation in the use of diversion among hospitals and there was concern that high-diverting EDs would be disproportionately affected. A further concern was that ambulance turnaround times would increase if ambulances were forced to spend a greater amount of time at crowded EDs, awaiting transfer of patients from an ambulance to an ED stretcher. This increased ambulance turnaround time would delay the return to service of emergency vehicles, delaying their response to the next emergency.

Editor’s Capsule Summary
What is already known on this topic
Ambulance diversion, a practice used by hospitals to deal with episodic emergency department (ED) crowding, may lead to delays in patient care.

What question this study addressed
Changes in ED length of stay and ambulance turnaround times associated with introduction of a Massachusetts state ambulance diversion ban in 2009.

What this study adds to our knowledge
Analyzing data from 9 Boston-area EDs, the authors found no increase in ED length of stay or ambulance turnaround time after introduction of the ambulance diversion ban.

How this is relevant to clinical practice
Communities considering introducing an ambulance diversion ban may be encouraged that neither ED length of stay nor ambulance turnaround time increased at 9 Boston-area hospitals after an ambulance diversion ban was introduced in Massachusetts.

Preliminary reports from hospitals suggest that the end of ambulance diversion has been a relative success because of operational changes made at individual hospitals in anticipation of the ban. Early reports from Boston Emergency Medical Services (EMS) suggest that there has not been an increase in ambulance turnaround time as feared, although this has not been formally studied.

Goals of This Investigation
Our study explores the association between the first statewide ambulance diversion ban and ED crowding and ambulance turnaround time at 9 Boston-area EDs.

MATERIALS AND METHODS
Study Design
We conducted a retrospective, pre-post observational study after the implementation of the statewide ambulance diversion ban on January 1, 2009, to determine changes in ED length of stay and ambulance turnaround time.

Setting
Our study sample consisted of 9 EDs: 7 within the city of Boston and 2 within the neighboring city of Cambridge (Table 1). The cities have a combined population of approximately 723,000. All of the participating hospitals are teaching hospitals, and 7 of the 9 EDs participate in 1 or more emergency medicine residency programs.

Selection of Participants
The participating EDs accounted for 77% of total ED volume in 2008 for Boston and all ED visits in Cambridge.

Table 1. Characteristics of EDs.

<table>
<thead>
<tr>
<th>ED Label</th>
<th>Annual ED Volume (1,000s)</th>
<th>Hospital Beds</th>
<th>ACS † Trauma Center</th>
<th>Diversion Hours ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20–50</td>
<td><200</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>20–50</td>
<td>200–500</td>
<td>No</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td><20</td>
<td>>500</td>
<td>No</td>
<td>76</td>
</tr>
<tr>
<td>D</td>
<td>80–120</td>
<td>>500</td>
<td>Yes</td>
<td>92</td>
</tr>
<tr>
<td>E</td>
<td>50–80</td>
<td>>500</td>
<td>Yes</td>
<td>122</td>
</tr>
<tr>
<td>F</td>
<td>20–50</td>
<td><200</td>
<td>No</td>
<td>153</td>
</tr>
<tr>
<td>G</td>
<td>20–50</td>
<td>200–500</td>
<td>Yes</td>
<td>227</td>
</tr>
<tr>
<td>H</td>
<td>50–80</td>
<td>>500</td>
<td>Yes</td>
<td>769</td>
</tr>
<tr>
<td>I</td>
<td>80–120</td>
<td>>500</td>
<td>Yes</td>
<td>858</td>
</tr>
</tbody>
</table>

Characteristics of nonparticipating EDs

<table>
<thead>
<tr>
<th>ED Label</th>
<th>Annual ED Volume (1,000s)</th>
<th>Hospital Beds</th>
<th>ACS † Trauma Center</th>
<th>Diversion Hours ‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>50–80</td>
<td>200–500</td>
<td>Yes</td>
<td>0</td>
</tr>
<tr>
<td>K</td>
<td>20–50</td>
<td><200</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>L</td>
<td>20–50</td>
<td><200</td>
<td>No</td>
<td>172</td>
</tr>
<tr>
<td>M</td>
<td><20</td>
<td><200</td>
<td>No</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

ACS, American College of Surgeons.
*Study EDs are labeled A through I. The remaining Boston EDs are labeled J through M.
†ACS designated trauma center.
‡Diversion hours: Total diversion hours for 2008 before the diversion ban.
§Nonparticipating Boston hospitals included a pediatric hospital, a specialty hospital, and 2 general hospitals for which ED length of stay data were unavailable.
The remaining Boston EDs included a pediatric hospital that never used ambulance diversion, an ED at a surgical subspecialty hospital with minimal ambulance volume, and 2 community EDs for which complete data were unavailable. All participating EDs receive ambulance traffic from Boston EMS, which handles approximately 98% of 911 ambulance transports for Boston.

Interventions
A ban on routine use of ambulance diversion was implemented on January 1, 2009. Building on its efforts during the previous decade to address ED crowding and ambulance diversion, in 2007 the Massachusetts Department of Public Health convened an ambulance diversion and patient flow task force, with numerous stakeholders participating, including EMS providers, nurses, physicians, and hospital administrators. After reviewing the growing body of literature and local examples of the negative consequences of diversion, as well as the success of regional no-diversion trials, consensus emerged that ambulance diversion should be eliminated and patient flow changes initiated within hospitals as a first step to reducing ED crowding. The task force formally voted to end ambulance diversion in Massachusetts in June 2008, and the ban was announced on July 3, 2008, eliminating diversion except in cases of internal hospital disaster as of January 1, 2009. As part of its announcement, the Massachusetts Department of Public Health reiterated the need to use the previously distributed resources to improve patient flow. In addition to these resources, regular conference calls were held for hospitals to exchange ideas and strategies for preparing for the ban.

Methods of Measurement
Measurements of total monthly ED volume and median ED length of stay for admitted and discharged patients were derived from the electronic tracking system of the individual participating EDs. Median length of stay was chosen a priori rather than mean to minimize the possibility of data skewing because of prolonged boarding times of behavioral health patients. Mean monthly ambulance turnaround time was provided by Boston EMS and obtained from its computerized log.

Data Collection and Processing
EDs provided monthly 2008 and 2009 data for total ED volume, median length of stay in minutes for admitted patients, and median length of stay in minutes for discharged patients. ED volume was standardized by multiplying total monthly volume by a ratio of 30.5 during the number of days in the respective month. Boston EMS provided the mean ambulance turnaround time by month to each hospital from January 2008 to December 2009. Turnaround time is defined as the time the ambulance arrives at the hospital subtracted from the time they clear or go back in service. All data provided were approved by the institutional review board at the respective institution. The number of diversion hours by month for each hospital was obtained from the Massachusetts Department of Public Health. Data were analyzed with Stata (version 11; StataCorp, College Station, TX).

Outcome Measures
The primary goal of our study was to determine whether there was a change pre- to postdiversion ban in any of the following outcomes: ED length of stay for discharged patients, ED length of stay for admitted patients, ambulance turnaround time, and ED volume. ED length of stay was defined as time of ED arrival to departure. ED length of stay is a National Quality Forum–endorsed metric that is used as a proxy for the measurement of ED crowding. Ambulance turnaround time is defined as the time from ambulance arrival to the ED until leaving the hospital. We included ambulance turnaround time to evaluate the effect of the ban on EMS availability and measured ED volume to characterize the magnitude of the effect of the ban on individual hospitals.

Primary Data Analysis
Because the diversion ban went into effect on January 1, 2009, the preperiod was defined as January through December 2008 and the postperiod as January through December 2009. We used univariate linear regression to compare the unadjusted change in the outcome measures overall and by individual hospital. We then included hospital fixed effects to account for time-invariant differences between the hospitals. We imposed a first-order autoregressive variance-covariance structure to adjust for autocorrelation of the outcome. In the preliminary analyses, we included a linear trend to account for ongoing changes in the outcomes unrelated to the diversion ban. The trend was not significant for any of the outcomes and was therefore dropped from the analysis.

We used a difference of differences analysis for the secondary analysis. EDs were divided into 2 groups, high and low diverters, according to the mean annual diversion hours in the preperiod. High diverters were EDs with mean diversion hours before the ban greater than the sample mean and low diverters were EDs with mean diversion hours less than the sample mean. We again used a general linear model with a first-order autoregressive variance-covariance structure to test for an association between the ban and the outcomes. Specifically, each outcome was regressed on the following: the main effect for the postperiod, a dichotomous indicator for each hospital (hospital fixed effects), and an interaction between the postperiod and high diverters. Main effects for the high versus low diverters were not included in the model because it would be collinear with hospital fixed effects. We first determined the changes pre to post separately for the high and low diverters and then for the fully specified model. The parameter of interest was the interaction of the
postperiod and high diverters; this parameter measured the expected change in each outcome among the high diverters after the ban relative to the change in the outcomes among the low diverters during the same period.

Sensitivity Analyses

We performed a sensitivity analysis to test whether our results were sensitive to assumptions about a washout period. To test these assumptions, we included a 6-month washout period.

Table 2. Changes in ED volume, length of stay, and turnaround time by hospital after the ambulance diversion.*

<table>
<thead>
<tr>
<th>ED Label</th>
<th>Monthly ED Volume</th>
<th>Length of Stay, Admitted Patients, Minutes</th>
<th>Length of Stay, Discharged Patients, Minutes</th>
<th>Ambulance Turnaround Time, Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Change, %</td>
<td>Preban</td>
<td>Postban</td>
<td>Change</td>
</tr>
<tr>
<td>A</td>
<td>9.5</td>
<td>170.0</td>
<td>172.8</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>(3.0 to 17.4)</td>
<td></td>
<td>(−9.9 to 15.4)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>3.9</td>
<td>287.0</td>
<td>269.4</td>
<td>−17.5</td>
</tr>
<tr>
<td></td>
<td>(−2.0 to 9.4)</td>
<td></td>
<td>(−29.6 to −5.5)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.0</td>
<td>284.2</td>
<td>263.2</td>
<td>−21.0</td>
</tr>
<tr>
<td></td>
<td>(−3.9 to 6.2)</td>
<td></td>
<td>(−39.4 to −2.6)</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2.9</td>
<td>304.6</td>
<td>289.0</td>
<td>−15.6</td>
</tr>
<tr>
<td></td>
<td>(−2.0 to 8.3)</td>
<td></td>
<td>(−32.3 to 1.1)</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>−4.5</td>
<td>336.4</td>
<td>338.0</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>(−13.1 to 5.3)</td>
<td></td>
<td>(−18.1 to 21.3)</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>4.7</td>
<td>306.2</td>
<td>284.3</td>
<td>−21.9</td>
</tr>
<tr>
<td></td>
<td>(1.0 to 8.3)</td>
<td></td>
<td>(−37.3 to −6.6)</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3.3</td>
<td>392.2</td>
<td>376.5</td>
<td>−15.7</td>
</tr>
<tr>
<td></td>
<td>(−2.0 to 8.3)</td>
<td></td>
<td>(−51.3 to 20.0)</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>4.9</td>
<td>386.5</td>
<td>364.4</td>
<td>−22.1</td>
</tr>
<tr>
<td></td>
<td>(1.0 to 17.4)</td>
<td></td>
<td>(−34.9 to −9.5)</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>7.0</td>
<td>455.5</td>
<td>427.5</td>
<td>−28.0</td>
</tr>
<tr>
<td></td>
<td>(4.1 to 10.5)</td>
<td></td>
<td>(−54.1 to −1.9)</td>
<td></td>
</tr>
</tbody>
</table>

*95% CIs shown in parentheses.

Figure 1. Changes in ED length of stay by hospital among A, admitted patients and B, discharged patients. C, Changes in ambulance turnaround time by hospital. D, Changes in total hospital volume before and after a ban on ambulance diversion by hospital.
period from July 2008 through December 2008 in our analysis, comparing low- to high-diverting hospitals.

RESULTS

Main Results

We present the characteristics of the 9 EDs in Table 1. In analysis of the outcomes by individual ED, 4 EDs showed an increase in ED volume, 4 demonstrated a decrease in length of stay for discharged patients, 5 had a decrease in length of stay for admitted patients, and all but 1 experienced a decrease in turnaround time (Table 2, Figure 1). After adjusting for hospital fixed effects and first-order autoregressive autocorrelation, there was a 3.6% increase in overall monthly ED volume after the ban (95% confidence interval [CI] 0.7% to 6.6%). There was also a 10.4-minute decrease in length of stay for admitted patients, as well as a 2.9-minute decrease (95% CI –5.1 to –0.7 minutes) in ambulance turnaround time. Low diverters experienced a 2-minute decrease in ambulance turnaround time as well (95% CI –3.2 to –0.8 minutes). The magnitude of the decrease in length of stay for admitted patients was greater for high diverters (–17.6; 95% CI –36.0 to 0.8 minutes) compared with that of low diverters (– 8.6; 95% CI –18.4 to 1.2 minutes), although the decrease was not statistically significant in either group. Furthermore, there was no difference in the relative change between high and low diverters in any of the outcomes (Table 4).

Sensitivity Analyses

Our results were not sensitive to the washout period. There were no observed increases in length of stay in any of the outcome measures after the diversion ban. There were decreases in length of stay for admitted patients in both high- and low-diverting hospitals. There was also a decrease in length of stay for discharged patients among high diverters and in turnaround time for both groups. There were no significant differences in the differential changes between high and low diverters (Table 5).

LIMITATIONS

Our study has several limitations. First, this was a retrospective study with a relatively small sample size in a single, urban area. As a
Table 4. Estimated change in outcomes between high and low diverters after the ambulance diversion ban, adjusting for hospital fixed effects and first-order autocorrelation.

<table>
<thead>
<tr>
<th>Outcome (Low Diverters Mean) (High Diverters Mean)</th>
<th>Change Among Low Diverters</th>
<th>Change Among High Diverters</th>
<th>Differential Change*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, % (3,857.1) (1,568.0)</td>
<td>3.0 (−0.2 to 6.4)</td>
<td>5.4 (−0.7 to 12.0)</td>
<td>2.4 (−4.6 to 10.3)</td>
</tr>
<tr>
<td>LOS, admitted, min (290.9) (408.5)</td>
<td>−8.6 (−18.4 to 1.2)</td>
<td>−17.6 (−36.0 to 0.8)</td>
<td>−9.1 (−29.9 to 11.8)</td>
</tr>
<tr>
<td>LOS, discharged, min (172.1) (228.55)</td>
<td>0.4 (−4.5 to 5.3)</td>
<td>−9.7 (−18.9 to −0.6)</td>
<td>−10.1 (−20.5 to 0.3)</td>
</tr>
<tr>
<td>TAT, min (24.1) (28.2)</td>
<td>−2.0 (−3.2 to −0.8)</td>
<td>−2.9 (−5.1 to −0.7)</td>
<td>−0.9 (−3.4 to 1.6)</td>
</tr>
</tbody>
</table>

*Differential change in the outcome between high- and low-diverting hospitals after the ban.

Table 5. Estimated change in outcomes between high and low diverters after the ambulance diversion ban, adjusting for hospital fixed effects and first-order autocorrelation and a 6-month washout period (July to December 2008).

<table>
<thead>
<tr>
<th>Outcome (Low Diverters Mean) (High Diverters Mean)</th>
<th>Change Among Low Diverters</th>
<th>Change Among High Diverters</th>
<th>Differential Change*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume, % (3,857.1) (1,568.0)</td>
<td>1.7 (−2.3 to 5.8)</td>
<td>2.4 (−4.2 to 9.4)</td>
<td>4.1 (−2.4 to 11.0)</td>
</tr>
<tr>
<td>LOS, admitted, min (290.9) (408.5)</td>
<td>−16.8 (−27.7 to −5.8)</td>
<td>−27.0 (−44.7 to −9.2)</td>
<td>−10.2 (−29.0 to 8.6)</td>
</tr>
<tr>
<td>LOS, discharged, min (172.1) (228.55)</td>
<td>0.2 (−5.9 to 6.2)</td>
<td>−10.4 (−20.0 to −0.8)</td>
<td>−10.6 (−20.6 to 0.5)</td>
</tr>
<tr>
<td>TAT, min (24.1) (28.2)</td>
<td>−3.4 (−4.7 to −2.1)</td>
<td>−4.4 (−6.9 to 2.3)</td>
<td>−1.0 (−3.2 to 1.3)</td>
</tr>
</tbody>
</table>

*Differential change in the outcome between high- and low-diverting hospitals after the ban, adjusting for autocorrelation by month and a 6-month washout period (July to December 2008).

result, we were unable to control for geographic effects of diversion on ED volume; diversion at one ED may have had a greater effect on volume at nearby EDs than those farther away. We also did not have the power to detect a time trend in ED volume in our sample, despite an ongoing increase in ED volume during the previous 5 years throughout the state. Because we were unable to detect such a trend, it was not possible to distinguish how much of the change in length of stay and turnaround time was due to background changes in volume as opposed to the ban itself. However, given that we observed decreases in length of stay and turnaround time rather than increases, any background increase in volume would likely lead to an understimation of the decrease in length of stay and turnaround time.

Second, the decline in diversion hours in the latter half of 2008 suggests that the effect of the diversion ban may have been realized before the January 1, 2009, implementation date. If the operational changes were made several months in advance, then the preban period would not be representative of a true baseline. This may have resulted in our having underestimated the actual decrease in length of stay as well.

Third, we used monthly median length of stay, which lacks the precision to find isolated periods of increased crowding within each month. This lack of precision might mask variations in crowding that occurred. Further study with shorter intervals is necessary to determine the frequency of any such periods of crowding.

Fourth, there is an inherent limitation in the use of time stamps used to calculate length of stay and turnaround time that rely on human data entry. However, we do not have reason to suspect a systematic difference in the accuracy of these stamps in the pre- and postdiversion ban periods.

Fifth, it is possible that the study hospitals were not significantly crowded before the diversion ban. If that were the case, the policy change might not have been expected to produce significant changes in our outcome variable. However, the Massachusetts Department of Public Health Boarding and Diversion Task Force, consisting of representatives from every key stakeholder organization, perceived crowding to be significant and persistent enough to warrant this substantial policy change. The view of the task force is also consistent with national reports of ED crowding.

Sixth, ED length of stay may have limitations as a proxy for ED crowding.

DISCUSSION

Ambulance diversion is currently used across the United States as a means to control ED crowding. In our study of the effect of an ambulance diversion ban on 9 Boston-area EDs, we found that despite an overall increase in ED volume, there was no evidence of an increase in length of stay for admitted or discharged patients. We also found a decrease in ambulance turnaround time, suggesting an increased availability of ambulances to respond to 911 calls.

We also compared the effects of the ambulance diversion ban between high- and low-diverting EDs. We hypothesized that if the diversion ban did in fact lead to an increase in ED crowding, then those EDs with a high rate of diversion would experience a greater relative increase in length of stay. Contrary to this hypothesis, there was no difference between high and low diverters in the relative change in length of stay for either admitted or discharged patients. When we analyzed high and low diverters separately, neither saw an increase in length of
stay. In fact, high diverters saw a decrease in length of stay for discharged patients, whereas low diverters did not, although the relative difference between the groups was not statistically significant. Together, these results support the findings from our primary analysis; length of stay for admitted and discharged patients did not increase, suggesting that the diversion ban did not worsen ED crowding. Additionally, there was no increase in ambulance turnaround time as feared, suggesting that the ambulance diversion ban did not pose an increased burden for EMS providers.

The concept of an ambulance diversion ban was initially met with some concern within Massachusetts.26 It was feared that ED crowding and EMS turnaround time would worsen if hospitals were unwilling or unable to implement the operational changes necessary to improve patient flow. Our study suggests that among these Boston-area hospitals, neither of these feared outcomes was realized. Although not the aim of this study, an informal query of the site investigators about hospital interventions was performed. Responses indicated that planning and real-time trouble shooting involved many levels of the hospitals' operational structure, including registration, housekeeping, high-level central administrators, and clinical chiefs. One common theme was that efforts were directed at addressing patient flow through the entire hospital, not just within the ED (Table 6). Not surprisingly, hospitals with greater crowding reported making more significant operational changes.

ED crowding has been conceptualized as an input/throughput/output model.4 Research has led to the consensus that crowding is largely due to output factors, particularly the practice of boarding admitted patients in the ED2,7-10 because of lack of inpatient capacity. Ambulance diversion, in contrast, is an input factor, which has little effect on ED crowding.4 Our study amplifies this previous research because a ban on ambulance diversion did not have a significant adverse effect on ED crowding. This was the first statewide ambulance diversion ban in the United States, and, to our knowledge, this is the first study to evaluate the effect of such a policy on measures of ED crowding.

The observed decreases in length of stay might seem unexpected but may be explained by both the input/throughput/output model

Table 6. Key interventions made by study hospitals before the implementation of the statewide ambulance diversion ban.

<table>
<thead>
<tr>
<th>ED</th>
<th>Intervention</th>
</tr>
</thead>
</table>
| A | Code Help implementation*
| | Inpatient bed rounds twice a day to decompress the ED
| | Streamline physician and nurse handoff for admitted patients
| | Improved ED efficiency (100% bedside registration, improved diagnostic turnaround time)
| | Emergency physician and nursing staffing backup and float pool |
| B | Ensured strict compliance with Code Help |
| C | Multidisciplinary and multidepartmental hospital system designed to address patient flow with the emergency preparedness/disaster notification system |
| D | Multidisciplinary and multidepartmental hospital system designed to address patient flow with the emergency preparedness/disaster notification system |
| E | Previous commitment to limiting diversion
| | Reduction in target hospital occupancy level
| | Increased transparency in hospital bed availability and real-time electronic inpatient bed capacity dashboard |
| F | Implementation of a surge plan when levels of boarding met a predetermined threshold
| | Gradual reduction in use of diversion by requiring administrative approval for the use of diversion
| | Changed culture to reduce use of diversion before the ban
| | Use of nontraditional spaces such as the PACU for boarding ED patients |
| G | “Priority alert” that expedites the movement of admitted patients to an inpatient bed by several mechanisms (electronic RN report, expedited housekeeping, additional involvement by the hospital nursing management)
| | Implementation of an “admission/discharge/transfer center” run by senior RN with assistance of the admitting office and a “bed czar” physician |
| H | Establishment of a threshold for deploying physicians at triage
| | Establishment of a 10-bed surge pod on the inpatient unit to care for boarding patients and an associated protocol for activation
| | Use of nontraditional space for boarding patients (PACU, off-hour postprocedure unit, etc)
| | Expansion of the ED (30%) with comprehensive ED flow process redesign
| I | Color-coded ED crowding monitoring system programmed in the ED tracking system
| | Identification of hospital leaders who would be notified when threshold levels of ED crowding were reached
| | Development of an algorithm to link acceptance of interfacility transfers to ED crowding measures while observing EMTALA rules (this changed the acceptance of transfers when the ED was severely crowded)
| | Twice-daily rounds involving admitting office, hospital nursing supervisors, and ED staff to monitor throughput
| | Internal medicine coverage of appropriate admitted patients waiting for inpatient bed |

EMTALA, Emergency Medical Treatment and Labor Act; PACU, postanesthesia care unit; RN, registered nurse.
and the circumstances of the implementation of the ambulance diversion ban. In its letter to Massachusetts hospitals in July 2008, the Massachusetts Department of Public Health specifically stated that “in preparation for this [ambulance diversion ban], we strongly encourage a review that all necessary steps have been taken to avoid ED overcrowding and boarding.”17 Diversion hours among the study hospitals started to decrease shortly thereafter (Figure 3). We hypothesize that this was due to concerted efforts by hospitals to make the operational changes necessary to improve patient outflow from the ED (output) to compensate for an anticipated increase in ED inflows (input). These changes may have led to greater ED outflow, thereby improving ED crowding and decreasing ED length of stay and ambulance turnaround time.

In conclusion, we found no evidence of an increase in ambulance turnaround time or ED crowding as measured by length of stay in 9 Boston area EDs after the nation’s first statewide ambulance diversion ban. Our findings support the anecdotal reports of the ban’s success and are consistent with existing literature that diversion is not an effective means to mitigate ED crowding. That the ban did not result in length of stay increases is likely due to the relatively small contribution that input factors play in ED crowding. Furthermore, the observed length of stay decrease for discharged patients treated at high-diverting hospitals suggests that those hospitals in particular made operational changes that significantly improved patient flow. We suggest that the combination of these 2 factors, the lesser contribution of ED inputs (ambulance volume) and the greater contribution of ED outputs (hospital-wide operational changes), are responsible for the ban’s apparent success. If our findings are confirmed by other studies, then broadly eliminating ambulance diversion may improve continuity of care and EMS availability without increasing ED crowding.

The authors acknowledge Alan Woodward, MD, past president of the Massachusetts Medical Society and cochair of the Massachusetts Department of Public Health Boarding and Patient Flow Task Force, for his guidance in this project and review of the article. The authors also acknowledge Theresa Nelson, MS, of Technomics Research for additional statistical analysis consulting.

Supervising editor: David J. Magid, MD, MPH

Author affiliations: From the Beth Israel Deaconess Medical Center, Boston, MA (Burke, Joyce, Epstein); the Boston Medical Center, Boston, MA (Baker); the Massachusetts General Hospital, Boston, MA (Biddinger); Boston Emergency Medical Services, Boston, MA (Dyer, Maciejko); the Tufts Medical Center, Boston, MA (Friedman); the Mount Auburn Hospital, Cambridge, MA (Imperato); the Brigham and Women’s Hospital, Boston, MA (King, Zane); the St. Elizabeth’s Medical Center, Boston, MA (Pearlmutter); and the Cambridge Health Alliance, Cambridge, MA (Sayah).

Dr. Zane is currently affiliated with the University of Colorado School of Medicine, Denver, CO.

Author contributions: LGB, NJ, and SKE conceived the study, designed the trial, and drafted the article. LGB and SKE undertook recruitment of participating centers and managed the data, including quality control. NJ provided statistical advice on study design and analyzed the data. All authors were involved in obtaining institutional review board approval from their respective institutions, data collection, and substantial contribution to the article revision. LGB takes responsibility for the paper as a whole.

Funding and support: By Annals policy, all authors are required to disclose any and all commercial, financial, and other relationships in any way related to the subject of this article as per ICMJE conflict of interest guidelines (see www.icmje.org). The authors have stated that no such relationships exist.

Publication dates: Received for publication December 2, 2011. Revisions received June 1, 2012, and August 23, 2012. Accepted for publication September 11, 2012.

Presented at the Society for Academic Emergency Medicine annual meeting, June 2010, Phoenix, AZ; and as a poster at the Society for Academic Emergency Medicine annual meeting, June 2011, Boston, MA.

Address for correspondence: Laura G. Burke, MD, MPH, E-mail lgburke@bidmc.harvard.edu.

REFERENCES

11. Redelmeier DA, Blair PJ, Collins WE. No place to unload: a preliminary analysis of the prevalence, risk factors, and
30. National Quality Forum. National voluntary consensus standards for emergency care—phase II: hospital-based emergency department (ED) candidate consensus standards. 2008. Available at: http://www.qualityforum.org/QPS/QPSTool.aspx?Exact=false&Keyword=loss%20PageState=%7B%22TabType%22%3A1,%22TabContentType%22%3A1,%22SearchCriteriaForStandard%22%3A%7B%22TaxonomyIds%22%3A5B%5D,%22SelectedTypeAheadFilterOption%22%3A%7B%22Id%22%3A471,%22FilterOptionLabel%22%3A%220496%22,%22TypeOfAheadFilterOption%22%3A4,%22TaxonomyId%22%3A%7D,%22Keyword%22%3A%220496%22,%22PageSize%22%3A225,%22%20OrderBy%22%3A%22%20ByRelevance%22,%22%20OrderType%22%3A2,%22%20PageNumber%22%3A11,%22%20SortBy%22%3A%22%22%20SortOrder%22%3A%22ASC%22%7D,%22ItemsToCompare%22%3A5B%5D,%22StandardId%22%3A471,%22EntitlType%22%3A1,%22%7D. Accessed November 30, 2012.
31. National Quality Forum. National voluntary consensus standards for emergency care—phase II: hospital-based emergency department (ED) candidate consensus standards. 2008. Available at: http://www.qualityforum.org/QPS/QPSTool.aspx?Exact=false&Keyword=loss%20PageState=%7B%22TabType%22%3A1,%22TabContentType%22%3A1,%22SearchCriteriaForStandard%22%3A%7B%22TaxonomyIds%22%3A5B%5D,%22SelectedTypeAheadFilterOption%22%3A%7B%22Id%22%3A471,%22FilterOptionLabel%22%3A%220496%22,%22TypeOfAheadFilterOption%22%3A4,%22TaxonomyId%22%3A%7D,%22Keyword%22%3A%220496%22,%22PageSize%22%3A225,%22%20OrderBy%22%3A%22%20ByRelevance%22,%22%20OrderType%22%3A2,%22%20PageNumber%22%3A11,%22%20SortBy%22%3A%22%22%20SortOrder%22%3A%22ASC%22%7D,%22ItemsToCompare%22%3A5B%5D,%22StandardId%22%3A471,%22EntitlType%22%3A1,%22%7D. Accessed November 30, 2012.
Figure E1. Monthly diversion hours by emergency department in 2008.