Current Issues in Stroke Systems Development

Peter P. Taillac, MD, FACEP
Medical Director
Utah Bureau of EMS and Preparedness
Objectives

• Review AHA/JC Stroke Center Classifications
• Discuss recent evidence in favor of endovascular treatment for certain strokes
• Discuss the role of EMS and state stroke systems in optimizing patient destination and treatment decisions
• Discuss Utah’s Stroke System Development
Stroke by the Numbers

Stroke Types

- **Ischemic 87%**
 - Embolic
 - Large vessels
 - Small vessels
 - Others

- **Hemorrhagic 13%**
 - ICH
 - SAH

ICH, intracerebral hemorrhage; LVO, large-vessel occlusion; SAH, subarachnoid hemorrhage.
Current Stroke Certifications

- The Joint Commission®
 - American Heart Association®
 - American Stroke Association®

 CERTIFICATION
 Meets standards for
 Comprehensive Stroke Center

- The Joint Commission®
 - American Heart Association®
 - American Stroke Association®

 CERTIFICATION
 Meets standards for
 Primary Stroke Center

- The Joint Commission®
 - American Heart Association®
 - American Stroke Association®

 CERTIFICATION
 Meets standards for
 Acute Stroke Ready Hospital

- NAEMSO

- UTAH DEPARTMENT OF HEALTH
Models of Stroke Care: Characteristics Of Different Stroke Centers

Academic medical center, tertiary care facility

Wide range of hospitals, standard stroke care, stroke unit; use tPA

Rural hospitals; basic care; drip and ship; use teletechnologies
Acute Stroke Ready Hospital (ASRH)

• Joint Commission and American Heart Association Criteria

• A dedicated stroke-focused program.
• Staffing by qualified medical professionals trained in stroke care.
• Collaboration with the local Emergency Management Systems (EMS) that encourages training in field assessment tools and communication with the hospital prior to bringing a patient with a stroke to the hospital.
• 24/7 ability to perform rapid diagnostic and laboratory testing.
• Ability to administer intravenous clot-busting medications to eligible patients.
• Availability of telemedicine technology.
• Use of transfer agreements/protocols with facilities that provide primary or comprehensive stroke services.
Geographical Limitations

By ground:
81% of the US population had 60-minute access to IV rt-PA capable hospitals
66% had access to PSCs

By ground
56% of US population have access to endo capable hospital

Adeoye Stroke 2014

Geographical Limitations
12 states and DC have enacted policies around the recognition of stroke facility designations.
Large-Vessel Occlusions (LVOs):

- Common: 33% to 40% of all ischemic stroke1,2
- Severe: 5x higher mortality; 3-fold reduction in good outcome
- Respond poorly to intravenous thrombolytic (IV t-PA)
- Successful opening of occlusion by IV t-PA3
 - Distal M1, M2, M3, and M4: 78% to 86%
 - Carotid terminus: \sim 28%

t-PA, tissue plasminogen activator.
Stroke Systems Of Care- EMS Transport Protocol

• **Challenges**

 • What role can EMS play in rapidly identifying patients with LVAO?
 • Which stroke severity screen should be utilized?
 • What role do PSC and ASRH play in an Endovascular world?
 • When should patients be transported straight to a CSC?
 • Should PSCs and ASRHs be bypassed in favor of CSCs?
 • How can we fully utilize the ENTIRE Stroke System of Care?

• Drip and Ship or straight to the Mother Ship?
Acute Ischemic Stroke: Treatment Options

Medical Management
- IV t-PA is the thrombolytic drug used in stroke patients.
- Patients must be within the time window of 0 to 3 hours from symptom onset.
- There are other contraindications associated with use of the drug as well.

Mechanical Thrombectomy
- This procedure uses a stent retriever that is placed in the occluded vessel through a catheter placed in the groin.
- The time window for mechanical thrombectomy is up to 6 hours from symptom onset.
- If the patient fails IV t-PA or is ineligible for IV t-PA, he/she may be eligible for mechanical thrombectomy.

Stroke Triage and Destination Scenarios

ASRH, acute stroke–ready hospital; CSC, comprehensive stroke center; EMS, emergency medical services; PSC, primary stroke center.
Stroke Severity Scales

<table>
<thead>
<tr>
<th>Score Scale</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Angeles Motor Scale (LAMS)</td>
<td>• Pure motor: easy to teach and perform</td>
<td>• Not validated</td>
</tr>
<tr>
<td></td>
<td>• High interrater reliability</td>
<td>• Facial droop interrater reliability</td>
</tr>
<tr>
<td></td>
<td>• Fast: 20 to 30 seconds to perform</td>
<td>• Caveat (present or absent)</td>
</tr>
<tr>
<td></td>
<td>• Predicts LVO</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Correlated to NIHSS scores (r = 0.75)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Performed by prehospital providers</td>
<td></td>
</tr>
<tr>
<td>3-Item Stroke Scale (3ISS)</td>
<td>• Prospective (171 patients)</td>
<td>Moderate sensitivity for LVO</td>
</tr>
<tr>
<td></td>
<td>• Fast: 20 to 30 seconds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Easy to perform</td>
<td>Not validated</td>
</tr>
<tr>
<td></td>
<td>• Reproducible; intraclass correlation coefficient (ICC): 0.947</td>
<td>Low derivation population</td>
</tr>
<tr>
<td></td>
<td>• Performed by stroke doctors</td>
<td>Not evaluated by EMS or in the prehospital setting</td>
</tr>
<tr>
<td></td>
<td>• Correlation with NIHSS: 0.954</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Only on 20 patients</td>
<td></td>
</tr>
<tr>
<td>Rapid Arterial Occlusion Evaluation (RACE)</td>
<td>• Derivation population: 654</td>
<td>Weakness both arms</td>
</tr>
<tr>
<td></td>
<td>• Validated in prehospital setting</td>
<td>Only LVO</td>
</tr>
<tr>
<td></td>
<td>• 357 patients</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Weights both hemispheres equally</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Most similar to NIHSS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High sensitivity</td>
<td></td>
</tr>
<tr>
<td>Cincinnati Stroke Triage Assessment Tool (C-STAT)</td>
<td>• Largest derivation/validation cohort</td>
<td>Moderate specificity of LVO</td>
</tr>
<tr>
<td></td>
<td>• Weighted scale: gaze getting 2 points</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Classification and regression tree (CART) analysis and neuroanatomy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• “Present” or “Absent” questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Not a graded analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fast: <1 minute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• High sensitivity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ongoing, prospective EMS study</td>
<td></td>
</tr>
</tbody>
</table>

Lessons Learned from Utah’s Stroke System Development

• Inclusive system
• Avoid bypass, especially in rural areas: raise the level of care in all hospitals
 • Only 50% of strokes arrive by EMS
• Voluntary
• Criteria for Utah Stroke Receiving Facility very similar to AHA/JC ASRH
• Partner with hospital association
• Keep knocking on the doors of uncertified hospitals
 • “How can we help you meet the criteria?”
• Toolkit
Utah SRF Toolkit

www.health.utah.gov/ems/stroke
Content Development (ACEP and Medtronic Foundation)

Chairs
Andrew W. Asimos, MD
Medical Director, Neurological Emergencies
Neurosciences Institute
Carolinas HealthCare System
Professor, Department of Emergency Medicine
Carolinas Medical Center
Charlotte, NC

Dr. Asimos has nothing to disclose.

Opeolu Adeoye, MD, MS, FACEP, FAHA
Associate Professor, Department of Emergency Medicine
Co-Director, UC Stroke Team
University of Cincinnati
Cincinnati, OH

Dr. Adeoye owns stock in Sense Diagnostics, LLC.

Nurse Planner
Darby L. Copeland, EdD, RN, NRP, NCEE
Executive Director
West Virginia College of Emergency Physicians
Wheeling, WV

Dr. Copeland has nothing to disclose.
Questions?